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Refresher
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Refresher

Recall, we are learning about the Simple Linear Regression (SLR) model:

Yi = β0 + β1X1i + εi

where i = 1, . . . , n indexes the data pairs (Yi ,Xi).

A simple linear regression model has a single explanatory variable (X1).
(Linear regression models that are not simple can have more than one
explanatory variable.)

The assumptions are Existence, Linearity, Independent, Homoscedasticity,
and Normality of the error term.
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Inference for Least Squares Estimators
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Inference for Least Squares Estimators

Under the assumptions, we have

εi ∼ N(0, σ2
e )

Yi |Xi ∼ N(µY |X , σ
2
Y |X )

where µY |X is allowed to change (linearly) with the explanatory variable.
That is,

µY |X = β0 + β1X

Therefore, if we assume normality of errors, then the least squares
estimators β̂0 and β̂1 are normally distributed, since β̂0 and β̂1 will be
functions of independent normally distributed random variables (See
Corollary 4.6.10 in Casella & Berger).
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Inference for Least Squares Estimators (cont.)

Alternatively, if we cannot assume normality of the error terms:
1 If we have a large sample size, asymptotic normality may be assumed

for the estimators (CLT!)
2 If we don’t have a large sample size and errors are not normally

distributed, bootstrap or Monte Carlo methods may be appropriate.
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Testing for Significant Associations
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Testing for Significant Associations

Say we want to test if there is a linear association between the explanatory
(X ) and response (Y ) variables. This would be equivalent to testing if the
slope is zero in the SLR model. Thus, we test the hypothesis:

H0 : β1 = 0 vs. HA : β1 6= 0

To perform this test, we use the fact that the ratio of the estimate to its
standard errors, called the t-statistic, follows a t-distribution with n − 2
degrees of freedom:

t = β̂1

SE (β̂1)
∼ tn−2

(n − 2 degrees of freedom because we estimate both the intercept and the
predictor beta coefficients)
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Testing for Significant Associations (cont.)

95% CI for the slope coefficient:

β̂1 ± tn−2,1−α/2SE (β̂1)

If we fail to reject H0, it generally means one of three things:
1 There is no association
2 There is no linear association
3 We’ve made a Type II error
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Example Regression Code and Output for FEV
Data
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R code

# Load in FEV dataset
fev <- read.csv("FEV_rosner.csv")

# Fit SLR FEV = B0 + B1*Age + E
fev_slr <- lm(fev ~ age, data=fev)
summary(fev_slr)
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R code (cont.)

##
## Call:
## lm(formula = fev ~ age, data = fev)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.57539 -0.34567 -0.04989 0.32124 2.12786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.431648 0.077895 5.541 4.36e-08 ***
## age 0.222041 0.007518 29.533 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5675 on 652 degrees of freedom
## Multiple R-squared: 0.5722, Adjusted R-squared: 0.5716
## F-statistic: 872.2 on 1 and 652 DF, p-value: < 2.2e-16
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SAS code
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Interpreting and Utilizing the Regression Output
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Interpreting and Utilizing the Regression Output

Q: What is the regression equation?
A:

ˆFEV = 0.432 + 0.222× Age

Q: What is the interpretation of the slope parameter?
A: For every 1 year increase in age between the ages of 3 and 19, the FEV
increases on average by 0.222 liters. (Note: restricted to observed range of
age values, no extrapolation!)

Q: What is the interpretation of the intercept?
A: When age is 0 years, average FEV is 0.432 liters. (Note: not scientifically
meaningful and also extrapolating outside the range of age values)
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Interpreting and Utilizing the Regression Output

Q: Is there a significant linear relationship between age and FEV?
A: Yes.

t = 0.22204
0.00752 = 29.53 ∼ t654−2

⇒ p < 0.0001

Thus, we reject H0: β1 = 0, and conclude there is a significant linear
relationship between age and FEV.
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Interpreting and Utilizing the Regression Output

Q: Calculate the 95% CI for age. Interpret.
A:

0.22204 ± t652,0.975 × 0.007518
= 1.963609× 0.007518
= (0.207, 0.237)

We are 95% confident that FEV increases between 0.207 and 0.237 liters on
average for every 1-year increase in age (between the ages of 3 and 19).
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Interpreting and Utilizing the Regression Output

Q: What is the predicted FEV for an 11-year old child?
A:

ˆFEV = 0.432 + 0.222(11) = 2.874 liters

Q: What is the predicted difference in FEV for 16-year old children versus
11-year old children?
A:

E (FEV |Age = 16)− E (FEV |Age = 11) = [β0 + β116]− [β0 + β111]
= β1(16− 11)
= 5β1

Based on the estimate from our regression model we predict the difference
between a 16- and 11-year old child to be 5β̂1 = 5(0.22204) = 1.1102 liters.

BIOS 6611 (CU Anschutz) Simple Linear Regression: A Simple Application and How We Make InferenceWeek 7 19 / 20



Interpreting and Utilizing the Regression Output

Q: What is the 95% CI around this predicted difference?
A:

5β̂1 ± t652,0.975SE (5β̂1)
5(0.22204) ± 1.96× 5× 0.00752

= (1.037, 1.184) liters

We are 95% confident that FEV increases between 1.037 and 1.184 liters on
average from ages 11 to 16 (or any other 5 year age difference between 3
and 19 years).
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