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The Best Fit
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The Regression Line

The line Y = β0 + β1X1 + ε is known as a regression model. The
components include:

β0, the intercept of the line
β1, the slope of the line
ε, the error term (i.e., the difference between the observed value and
the (unobserved) true value of a quantity of interest, such as the
population mean)

The predicted value of Y for a given value of X is

Ŷ = β̂0 + β̂1X1,

where the hats represent the estimated values for our regression coefficients
and the resulting FEV predicted value.
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The Regression Line and Its Components

Let (Xi ,Yi ) be data for the ith
individual for i = 1, ..., n.
The difference between a fitted
and observed value is called the
residual (ei), which is our
sample estimate of the error
(εi).
We can choose the "best" line as
the line that minimizes the
residuals.

●

●

●

●

●

●

●

●

●

●

●

X

Y

0
0

●

Observed value: (Xi,Yi)
Yi = β0 + β1Xi + εi

Predicted/fitted value: (Xi,Ŷi)

Error/residual: ei

ei = Yi − Ŷi

Ŷ = β̂0 + β̂1X
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Approaches to Quantify the Total “Error”

Remember, the error (εi) is the unobserved true deviation of an observation
from our quantity of interest. However, we can use the observable residuals
(ei) to quantify the total “error” and identify the “best” fit.

There are multiple approaches to quantify the total error:
1 S =

∑n
i=1 ei (i.e., the sum of residuals)

2 S =
∑n

i=1 |ei | (i.e., the sum of the absolute value of residuals)
3 S =

∑n
i=1 e2

i (i.e., the sum of squares due to error)

However, these are not all equally useful approaches:
1 An infinite number of approaches can minimize Approach 1.
2 Approach 2 is analytically difficult to work with.
3 Approach 3 is “easy” to use and has theoretical justification. This has

become the standard method used to minimize the residuals.
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Method of Least Squares/Least Squares Regression

S =
∑n

i=1 e2
i is called the method of least squares or least squares

regression because it minimizes the sum of squares due to error (SSError):

SSError = SSE =
n∑

i=1
e2

i =
n∑

i=1
(Yi − Ŷi )2 =

n∑
i=1

(
Yi − (β̂0 + β̂1Xi )

)2

The SSE is also known as the sums of squares error or residual sum of
squares.
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Mathematical Approach to Least Squares

Mathematically stated, this approach identifies estimates for β0 and β1, β̂0
and β̂1, such that for any other possible estimators, β̂∗0 and β̂∗1 , it must be
true that:

SSE =
n∑

i=1
e2

i =
n∑

i=1

(
Yi − (β̂0 + β̂1Xi )

)2
<

n∑
i=1

(
Yi − (β̂∗0 + β̂∗1Xi )

)2

How can we arrive at these optimal estimates for β̂0 and β̂1?

One approach is to treat our SSError as a loss function and minimize it over
all choices for β0 and β1. To obtain the minimum (or maximum) of a
function we find values such that the first (partial) derivatives are equal to
0. We will derive these in a separate slide set.
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Summary Formulas
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Formulas for β̂0 and β̂1

All simple linear regression parameters can be estimates from 5 summary
statistics:

1 n
2
∑

Xi (can determine X̄ by dividing by n)
3
∑

Yi (can determine Ȳ by dividing by n)
4
∑

(X 2
i )

5
∑

(XiYi )

With these 5 statistics we have

β̂1 =
∑n

i=1(Xi − X̄ )(Yi − Ȳ )∑n
i=1(Xi − X̄ )2 = SXY

SXX

β̂0 = Ȳ − β̂1X̄

SXY is the sums of squares of our cross-product between X and Y . SXX is
the sums of squares of X (which is connected to our sample variance if we
divide it by n − 1).
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Relationships of β̂1 with Other Quantities

There are also some interesting connections for the sums of squares that
make up β̂1:

SXY
SXX

× n − 1
n − 1 =

SXY
n−1
SXX
n−1

= Cov(X ,Y )
Var(X ) = rX ,Y

sy
sx
,

where sy and sx are the uncorrected sample standard deviations (i.e., they
use n instead of n − 1).
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Variance Formulas

We also have formulas for the variance of our regression coefficients, which
can help us to calculate confidence intervals or other summaries.

For these formulas, we first need to state the overall variance of Y :

σ̂2
Y =

∑n
i=1(Yi − Ȳ )2

n − 1

But for each value of X there is a subpopulation of values of Y . The
variances of the subpopulations are σ2

Y |X are are estimated by:

σ̂2
Y |X =

∑n
i=1(Yi − Ŷ )2

n − 2 =
∑n

i=1

(
Yi − (β̂0 + β̂1Xi )

)2

n − 2 = SSError
n − 2 = MSE

This is also known as the mean square error or the residual variance.
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σ̂2
Y |X Behavior

If σ̂2
Y |X is 0, then the points will fall

exactly on the regression line.
If σ̂2

Y |X is small, then the points will
lie close to the regression line.
If σ̂2

Y |X is large, then the points will
not fall close to the regression line.
(Due to true variability in Y |X
and/or lack of fit.)
The larger σ̂2

Y |X , the most scatter
there will be in the data about the
regression line.
σ̂2

Y |X is only an unbiased estimator
for σ2

Y |X if the model is correct,
otherwise σ̂2

Y |X > σ2
Y |X .
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Standard Errors for Our Intercept and Slope

If we assume a known mean square error (MSE):

SE (β̂0) =

√√√√σ2
Y |X

(
1
n + X̄ 2∑n

i=1(Xi − X̄ )2

)

SE (β̂1) =

√√√√ σ2
Y |X∑n

i=1(Xi − X̄ )2

If we estimate the MSE from our sample we can use the plug-in principle:

ŜE (β̂0) =

√√√√σ̂2
Y |X

(
1
n + X̄ 2∑n

i=1(Xi − X̄ )2

)

ŜE (β̂1) =

√√√√ σ̂2
Y |X∑n

i=1(Xi − X̄ )2
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Sampling Distributions for Our Intercept and Slope
Because the intercept and slope are statistics, they have their own sampling
distributions.

If our assumptions (i.e., existence, linearity, independence, homoscedasticity,
and normality of the errors) are met and we assume a known variance they
will be normally distributed:

β̂0 ∼ N
(
β0,SE (β̂0)

)
; β̂1 ∼ N

(
β1,SE (β̂1)

)
Oftentimes we estimate σ2 from a sample as s2, and therefore the
distribution will actually follow tn−2. (Although as n gets larger it
approximates the normal distribution.)

Specifically, we can make a connection to the standard normal (or
t-distribution equivalent):

β̂1 − β1

SE (β̂1)
∼ N(0, 1) or β̂1 − β1

ŜE (β̂1)
∼ tn−2
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Notation Summary
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Notation Summary

Right Notation:
Truth: Yi = β0 + β1Xi + εi
Expected: E [Yi ] = β0 + β1Xi
since E [εi ] = 0
Estimate: Ŷi = β̂0 + β̂1Xi

Wrong Notation:
Yi 6= β0 + β1Xi (implies Y vs X
is a perfect line)
E [Yi ] 6= β̂0 + β̂1Xi since
E [β] = β and E [β̂] = β
Truth vs. estimate 1:
Ŷi 6= β0 + β1Xi
Truth vs. estimate 2:
Yi 6= β̂0 + β̂1Xi
Truth vs. estimate 3:
εi 6= ei = Yi − Ŷi
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Observed value: (Xi,Yi)
Yi = β0 + β1Xi + εi

Predicted/fitted value: (Xi,Ŷi)

Error/residual: ei

ei = Yi − Ŷi

Ŷ = β̂0 + β̂1X
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