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Linear Regression Assumptions Revisited
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Linear Regression Assumptions

Existence: For any fixed value of the variable X , Y is a random variable
with a certain probability distribution having finite mean and variance.

Independence: The Y -values are statistically independent of one another.

Linearity: The mean value of Y , µY |X , is (approximately) a straight-line
function of X .

Homoscedasticity: The variance of Y is the same for any X . That is,

σ2
Y |X = σ2

Y |X=1 = σ2
Y |X=2 = ... = σ2

Y |X=x

Normal Distribution: For any fixed value of X , Y has a normal
distribution. Note this assumption does not state that Y is normally
distributed, but that Y |X is normally distributed.
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The Normality Assumption

Recall the normality assumption:

Not required to obtain estimate of the regression coefficients (β’s)

Needed to perform statistical tests (t- or F -tests depend on normality
assumption)

Obtain confidence intervals (rely on t- or F -distributions, which
assume normality)

Estimates are asymptotically normal (i.e. assume normal when sample
size is large)
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Regression Diagnostics

1 Regression diagnostics are tools that can be used to assess the linearity,
homoscedasticity, and normality assumptions of linear regression.
(Used more often)

2 Regression diagnostics are also used to help identify outliers and
influential points in a regression model. (Used less often)

BIOS 6611 (CU Anschutz) Residuals Week 9 6 / 21



Regression Diagnostics

With linear models, the assumptions of linearity, homoscedasticity, and
normality are so intertwined that they often are met or violated as a set.

On the other hand, actions taken to correct violations of one assumption
may result in violations of another assumption (e.g., transformations to
stabilize the variance can lead to non-linearity).

Prior to fitting a regression model, simple descriptive statistics should be
evaluated to look for data errors, potential outliers, and other potential
violations of assumptions:

Univariate descriptive statistics (mean, SD, min, max; frequency tables;
histograms).
Bivariate descriptive statistics (correlations/scatterplots).
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Residuals
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Errors

In regression analysis we assume that the unobserved error terms (εi):

are independent (uncorrelated)
have a mean of zero
have a common variance of σ2

Y |X
follow a normal distribution (required for performing parametric tests
of significance and for calculating confidence intervals)
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Residuals

Recall that the observed residuals (êi = Yi − Ŷi) are estimates of the
unobserved error terms.

The êi are not independent random variables (since they must sum to zero).
However, if the number of residuals (n) is large relative to the number of
independent variables (p), the dependency effect can, for all practical
purposes, be ignored in any analysis of the residuals.

Examining the observed residuals (or functions of observed residuals) can be
used to evaluate our OLS assumptions. We will introduce five types:

1 Observed
2 Standardized
3 Studentized
4 Press
5 Jackknife
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Observed Residual

The observed residual is the difference between the observed and
predicted values:

êi = Yi − Ŷi

The observed residuals have a

mean of 0
variance of S2

e = 1
n−p−1

∑n
i=1 ê2

i (i.e., the residual mean square error:
MSE)

The magnitude of the observed residuals depends on the scaling of Y . This
makes defining general rules challenging, so different methods of
standardizing the residuals have been developed.
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Standardized Residual

The standardized residual (also known as the semi-studentized residual) is
the observed residual divided by

√
MSE :

zi = êi
σ̂Y |X

= êi√
MSE

Standardized residuals have a

mean of 0
variance of 1

In other words, the standard residuals follow a standard normal distribution.
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Studentized Residual

The studentized residual is the observed residual divided by the standard
deviation of the ith residual [i.e., Var (êi) = MSE × (1− hi)]:

ri = êi√
MSE × (1− hi)

= zi√
(1− hi)

= (standardized residual)i√
(1− hi)

hi is the leverage, which is a measure of the importance of the ith
observation in determining model fit and is also the ith diagonal element of
the hat matrix (H = X(XT X)−1XT , more later).

Studentized residuals have a

mean near 0 (but not exactly 0)
variance of 1

n−p−1
∑n

i=1 r2
i , that is slightly larger than 1

The studentized residuals follow approximately a t-distribution with
n − p − 1 degrees of freedom (assuming the assumptions of the errors are
satisfied).
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Deleted Residual

The deleted residual (also known as the press residual) is the standardized
residual with the current observation deleted in the estimation of the β’s
(and thus from the calculation of the MSE):

di = Yi − Ŷi(−i)

where Ŷi(−i) is the predicted value for the ith observation from a model fit
without it (i.e., deleted from that model for estimating the β’s and
predicted using the resulting estimates).

To avoid fitting n different regression models, we can instead use the
following formula if we know the leverage:

di = êi
1− hi

This summary is most useful in the calculation of the jackknife residuals. . .
BIOS 6611 (CU Anschutz) Residuals Week 9 14 / 21



Jackknife Residual

The jackknife residual (also known as the studentized deleted, R-student,
studentized press, externally studentized residual) is the studentized residual
with the current observation deleted:

r(−i) = ri

√
MSE

MSE(−i)
= êi√

MSE(−i)(1− hi)
= ri

√
(n − p − 1)− 1
(n − p − 1)− r2

i

where MSE(−i) is the residual variance (i.e., MSE) computed with the ith
observation deleted.

Jackknife residuals have a

mean near 0
variance of 1

(n−p−1)−1
∑n

i=1 r2
(−i) that is slightly greater than 1

Jackknife residuals exactly follow a t-distribution with (n − p − 1)− 1
degrees of freedom.
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Examining Residuals

BIOS 6611 (CU Anschutz) Residuals Week 9 16 / 21



Examining Residuals

If the standard regression assumptions are satisfied and approximately the
same number of observations are made at all predictor values, then patterns
in standardized, studentized, and jackknife residuals will look similar.

As potential problems arise, studentized and jackknife residuals will make
suspicious values more obvious and are thus often preferred. However,
jackknife residuals are more sensitive and are usually the most preferred
residual for regression diagnostics.
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The Standard Normal Distribution when n > 30

As the error degrees of freedom (n− p − 1 for studentized and n− p − 2 for
jackknife) increase much above 30, the distribution of the residuals can be
approximated increasingly by a standard normal distribution.

This is useful for evaluating the size of observed residuals and for
identifying outliers by appealing to properties of a standard normal
distribution.

For example, no more than 5% of the residuals would be expected to
exceed 1.96 in absolute value.
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Calculation in R

Different functions exist to calculate and extract our residuals in R, so we
introduce a few helpful ones here in the context of the glm function:
set.seed(515)
x <- rnorm(n=100, mean=5, sd=3)
y <- rnorm(n=100, mean=3+2*x, sd=5)
glm1 <- glm(y ~ x)

coef(glm1)
## (Intercept) x
## 2.728488 2.171943

observed_res <- glm1$residuals # the observed residuals
head(observed_res)
## 1 2 3 4 5 6
## 4.426337 3.784119 -4.514892 4.036424 -7.319465 -4.961615

jackknife_res <- rstudent(glm1) # the jackknife residuals
head(jackknife_res)
## 1 2 3 4 5 6
## 0.7860515 0.6655550 -0.8121844 0.7095707 -1.2913341 -0.8755936
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Calculation in R
par(mfrow=c(1,2), mar=c(5.1,4.1,0.5,1.1))
plot(x=x, y=observed_res, xlab='', ylab='Observed Residual', cex=0.5, cex.axis=0.8); mtext('X',side=1,line=2)
plot(x=x, y=jackknife_res, xlab='', ylab='Jackknife Residual', cex=0.5, cex.axis=0.8); mtext('X',side=1,line=2)
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Quantitative Examination of Residuals (Preview)

Residuals can be used to graphically or formally evaluate:

skewness (degree of asymmetry of a distribution)

kurtosis (heaviness of the tails relative to the middle of the
distribution)

normality assumption

equal variance assumption

independence assumption (when data are collected in a time sequence)
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